Seed phrase - Bitcoin Wiki

Bitcoin

Discussion about Bitcoin. BitcoinSV restores the original Bitcoin protocol, will keep it stable, and allow it to massively scale on-chain. BSV will maintain the vision laid out by Satoshi Nakamoto in the 2008 white paper - Bitcoin: A Peer-to-Peer Electronic Cash System.
[link]

BIP-39 mnemonic phrase obfuscator /r/Bitcoin

BIP-39 mnemonic phrase obfuscator /Bitcoin submitted by HiIAMCaptainObvious to BitcoinAll [link] [comments]

BIP 39, 44 and 32 confusion /r/Bitcoin

BIP 39, 44 and 32 confusion /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

keepkey lost data - one missing recovery word - I need a bip 39 cracker /r/Bitcoin

keepkey lost data - one missing recovery word - I need a bip 39 cracker /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Do you trust BIP 39 generated by Ledger or generate your own? /r/Bitcoin

Do you trust BIP 39 generated by Ledger or generate your own? /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Several frustrating hours later. How to retrieve bitcoin with BIP-32/BIP-39 extended key.

Hi. Last time I had reason to use bitcoin was several months ago and HiveWallet was functional. I possess the 12 word key I was instructed to hold on to. First I think(?) HiveWallet uses BIP-32 and BIP-39, something about this is crucial information. I believe I can turn the words into an extended key and retrieve funds somehow, but with every wallet I've tried so far I can't locate a box where I can enter said extended key to gain access to that wallet.
I feel like this is a really simple problem I've been frustrating myself with for hours. Help me. I beg of you.
submitted by preciouslemon to BitcoinBeginners [link] [comments]

can you use BIP 39 mnemonic to memorize any long strings? /r/Bitcoin

can you use BIP 39 mnemonic to memorize any long strings? /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Bip 39, storing backup of seed words. /r/Bitcoin

Bip 39, storing backup of seed words. /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

4 dice, a BIP-39 wordlist and a 7-year old girl /r/Bitcoin

4 dice, a BIP-39 wordlist and a 7-year old girl /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

BIP 39 and BIP44 /r/Bitcoin

BIP 39 and BIP44 /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

[x-post from /r/bitcoin]: Quick question on BIP-39: The definition for the spec and wordlist mentions nothing about upper vs lower case...does case matter?

[x-post from /bitcoin]: Quick question on BIP-39: The definition for the spec and wordlist mentions nothing about upper vs lower case...does case matter? submitted by gunslinger_006 to TREZOR [link] [comments]

Is there a Bip 39/42 Android Wallet SDK/Library? /r/Bitcoin

Is there a Bip 39/42 Android Wallet SDK/Library? /Bitcoin submitted by coincrazyy to BitcoinAll [link] [comments]

BIP Status updates (including to Active/Final Status) - BIP 39, BIP 43, BIP 44, BIP 67, BIP 111, BIP 125, BIP 130 | Luke Dashjr | Aug 23 2016 /r/bitcoin_devlist

BIP Status updates (including to Active/Final Status) - BIP 39, BIP 43, BIP 44, BIP 67, BIP 111, BIP 125, BIP 130 | Luke Dashjr | Aug 23 2016 /bitcoin_devlist submitted by BitcoinAllBot to BitcoinAll [link] [comments]

How Can You Generate Single Keypair and Address from BIP-39 Mnemonic? /r/Bitcoin

How Can You Generate Single Keypair and Address from BIP-39 Mnemonic? /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Danger: Be Careful with Samourai Wallet

The BIP39 derivation key from some versions looks like to be wrong. Previously, I had used the same paper backup to recover it (18 months ago) from an old phone that broke the screen.
Recently I migrated my phone (which bricked) to a new one. Both the backup and the BIP 39 did provide the same set of addresses.
I asked the Support, and for the second time (the first time I payed more than 300$ in fees due to a Replace by Fee order was called as a CPFP without my previous consensus), I had a terrible experience with them, they did not even reply explaining possible solutions.
The aforementioned explanation is what I suggest that happened due to some experience I have as developer.
Another thing I asked them was to provide to me the releases of the previous versions and they said they would not provide that on email. They suggest me to look at their github release (I believe I would be able to compile their project and try to create the Android Apk, but I did not try because it would surely consume time, and luckily I had the option to try with the old screen broken phone).
The repaired old phone had the software installed and configured, then, with the pin I was able to rescue the bitcoins.
In summary, from now on, I do not plan to use none of the softwares developed by them anymore. The communication is terrible and lost my credibility.
I understand that the software is not Beta but some core features should already be stable.
In this sense, it is surely hard to me to keep trusting in their team.
Use hardware or paper wallets (generate public keys offline and save them) if you want to hold as a reserve. If you have recommendation for a trustable Android one it would be good to hear.
submitted by vncoelho to Bitcoin [link] [comments]

10-02 12:36 - '[quote] 2048 tokens / I start the team . / python [btcrecover.py] \--wallet wallet.dat --tokenlist tokens.txt --no-dupchecks --no-eta --max-tokens 12 --autosave savefile' by /u/Defiant-Apricot-1883 removed from /r/Bitcoin within 0-7min

'''
forcing a bip 39
2048 tokens I start the team . python [btcrecover.py]1 --wallet wallet.dat --tokenlist tokens.txt --no-dupchecks --no-eta --max-tokens 12 --autosave savefile
'''
Context Link
Go1dfish undelete link
unreddit undelete link
Author: Defiant-Apricot-1883
1: **cre*over.py
Unknown links are censored to prevent spreading illicit content.
submitted by removalbot to removalbot [link] [comments]

Importing from Jaxx

Hi, I'd like to import all my assets from Jaxx wallet to exodus, I had read that I could just use the 12 words passphrase to do this (Without fees). But I'd like to know a bit more about this.
As I understand it, the 12 words is a bitcoin implementation (BIP-39) but how does this converts to other blockchains? for example, monero, eth, neo and such?
I like to think that I understand how the BIP-39 works for deriving keys for bitcoin, but no idea bout how that extends to others...
submitted by pakcjo to ExodusWallet [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethereum [link] [comments]

Revisiting BIP-39 seed phrase standard in 2020

In the past, several people have asked about why Monero doesn't use BIP-39 seed phrases. There were fairly detailed responses like this on on Stack Exchange: https://monero.stackexchange.com/a/2300/1023
Given that there has been some significant changes since that answer in 2016, I'd like to open up this discussion again.
Primarily given these new facts:
The two benefits outlined in the 2016 Stack Exchange answer (reversibility and ability to substitute on language for another) appeal to the geek in me, but would probably be irrelevant for most users.
Anyhow, given the above info, it seemed that we might open an old discussion again and consider the benefits of adopting a more universal standard.
Thoughts? Anything I missed?
submitted by jonf3n to Monero [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to privacycoins [link] [comments]

BIP 85: Deterministic Entropy From BIP32 Keychains

BIP 85 defines a way to use a master seed XPRV to derive new BIP39 mnemonic for all your wallets, you can find the pull request here. This BIP will soon be implemented in the ColdCard firmware (pull request merged in master). The principle is to use a derived seed from the master one as randomness to generate new BIP 39 mnemonics on your ColdCard and use them as seed of other wallets.
In practice the implications is less seeds to backup because the mnemonic were derived from the same master key, you don't need to backup the words of your other wallets. This means that you will need to only backup the derivation path used to derive the mnemonics and the master key.
You will basically need to backup only one seed, the one of the (air-gapped) ColdCard you used to derive the mnemonics !
I find this really cool !
The limitation is that you still have to backup the seed of the wallets that don't use BIP32 derivation path like the one of LND.
submitted by Pantamis to Bitcoin [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to CryptoCurrencies [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethtrader [link] [comments]

3. Key generation and recovery phrases (BIP-39) - Build your own Bitcoin hardware wallet bip39 seed arrangment bitcoin private key hack COBO Tablet for Backing up Mnemonic Seed Phrases for Bitcoin Wallets BIP39 Bitcoin Private Key and Aeternity Key Translate Help ... Brute Force BIP39 Passphrase Recovery. (25th Word, Hidden ...

BIP39 and its flaws. BIP39 is the most common standard used for seed phrases. One notable example is Electrum wallet, which is using its own standard, and for good reasons.BIP39 has some flaws, known in the technical community but not known much wider. They are described here on this electrum doc page.Most seriously, BIP39 flaws mean it is not true to say that backing up a BIP39 seed phrase ... This page describes a BIP (Bitcoin Improvement Proposal). Please see BIP 2 for more information about BIPs and creating them. Please do not just create a wiki page. Mnemonic code for generating deterministic keys. You can enter an existing BIP39 mnemonic, or generate a new random one. Typing your own twelve words will probably not work how you expect, since the words require a particular structure (the last word is a checksum). Mnemonic code for generating deterministic keys. You can enter an existing BIP39 mnemonic, or generate a new random one. Typing your own twelve words will probably not work how you expect, since the words require a particular structure (the last word contains a checksum). So, What Is A BIP 39 tool or Bitcoin Mnemonic Generator? A tool that is used to generate BIP39 mnemonic phrases randomly is called a Bitcoin mnemonic generator or BIP 39 tool. But many a time, this tool is also used to covert BIP39 mnemonic phrases to public addresses and private keys. BIP39 describes the implementation of a mnemonic sentence.

[index] [34271] [29848] [31948] [12764] [6682] [18453] [3638] [28452] [19654] [29855]

3. Key generation and recovery phrases (BIP-39) - Build your own Bitcoin hardware wallet

Domingão do Bitcão, Analise de Bitcoin e Criptomoedas AO VIVO Augusto Backes 189 watching Live now Blockchain tutorial 28: Bitcoin Improvement Proposal 39 (BIP-39) mnemonic words - Duration: 17:45. bip 396 12 words, 18 words, 24 words, scrambled words into a valid mnemonic. Get your ColdTi plates on our website at https://www.coldti.com In this video we show how to punch numbers into ColdTi titanium cold storage plates. The BIP 39 number list can be found here: https ... Blockchain tutorial 28: Bitcoin Improvement Proposal 39 (BIP-39) mnemonic words - Duration: 17:45. Mobilefish.com 12,129 views. 17:45. Are 12-word Seeds for Bitcoin Private Keys Secure? Mnemonics (BIP 39) (Money Button Documentation Series) Money Button. ... We are covering all of the material a developer needs to know to be able to build applications on the Bitcoin SV (BSV ...

#