Open-Source-FPGA-Bitcoin-Miner/mine.tcl at master ...

Aeon

Aeon (AEON) is a private, secure, untraceable currency. You are your bank, you control your funds, and nobody can trace your transfers.
[link]

The World's First Open Source Laptop with a FPGA That Can Mine Bitcoins

The World's First Open Source Laptop with a FPGA That Can Mine Bitcoins submitted by zenojis to Bitcoin [link] [comments]

Foreman: manage your ASICs and FPGAs remotely!

Hello Reddit!
I'd like to welcome you all to try Foreman, our miner management platform.
Site: https://foreman.mn/
Demo: here
What we offer:
What we support: (user request driven - you ask, we add support)
ASICs and FPGAs:
Rigs:
If you're still with us, check us out. Fully free for 30 days!
If you have any questions, don't hesitate to hop on our Discord.
BitcoinTalk: here
Medium: here
Twitter: here
Open-source: here
Happy Mining,
The Foreman Team
submitted by lambrosif to BitcoinMining [link] [comments]

Monero, the Most Private Cryptocurrency

Monero, the Most Private Cryptocurrency
Written by the CoinEx Institution, this series of jocular and easy to understand articles will show you everything you need to know about major cryptocurrencies, making you fully prepared before jumping into crypto!

https://preview.redd.it/ryvcznqspe451.jpg?width=720&format=pjpg&auto=webp&s=5fa91e26288d7b0a624113ed21172cc9fd5624a3
Monero, or XMR for short, is an open-source cryptocurrency that is safe, reliable, private, and untraceable. It can run on Windows, Mac, Linux, and FreeBSD, and is known as one of the most private cryptocurrencies. In 2018, Monero already ranked 10th in terms of trading volume, with its market value beyond 1 billion US dollars, an evidence for its great fame in this field.
By a special method in cryptography, Monero ensures that all transactions remain 100% irrelevant and untraceable. Perhaps after reading this article, you will understand why it is so special and popular in the increasingly transparent and traceable cryptocurrency circle (After all privacy comes first!).
In fact, many large cryptocurrencies in the world are not anonymous. All transactions on Bitcoin and Ethereum are made public and traceable, which means that anyone can eavesdrop on transactions flowing into and out of the wallet. That has given rise to a new type of cryptocurrency called “privacy currency”! These “privacy currencies” hide encrypted transactions by adopting specific types of passwords. One typical example is Monero, one of the largest privacy cryptocurrencies in the world.
Monero was created on April 18, 2014 under the name BitMonero, literally the combination of Bit (Bitcoin) and Monero (the “coin” in Esperanto). In five days, the community decided to change its name to Monero.
Interestingly, Monero’s creators valued personal privacy and tried to behave in a low-key manner with pseudonyms instead of the real names. It is said that the Monero major contributor’s nickname is “thankful for today”, yet this guy has gradually disappeared from public view as Monero developed day by day.
Unlike many cryptocurrencies derived from BTC, Monero is based on the CryptoNote protocol. It is also the first branch based on the Bytecoin of CryptoNote currency. Here is some information about Bytecoin: BCN, for short, is a decentralized cryptocurrency with a high degree of privacy; it has open-source codes that allow everyone to contribute to the development of the Bytecoin network; and the Bytecoin network provides global users with instant private transactions that are not traceable and at no additional cost.
Yet, as a branch of BCN, Monero outshines its parent in reputation by being different in two ways. First, Monero’s target block time was reduced from 120 seconds to 60 seconds; second, the issuance speed was cut by 50% (which reverted to 120-second residence later, with the issuance time maintained and the reward for each new block doubled). By the way, during the fork, the Monero developers also found a lot of low-quality codes and then refactored them. (That is exactly what geeks will do)
Monero’s modular code structure was also highly appreciated by Wladimir J. van der Laan, one of the core maintainers of Bitcoin.
Monero values privacy, decentralization and scalability, and there are significant algorithm differences in blockchain fuzzification, which sets it apart from its peers. How private is it? Here are more details.
1. Safe and reliable
For a decentralized cryptocurrency, decentralization means that its network is operated by users; transactions are confirmed by decentralized consensus and then recorded on the blockchain irrevocably. Monero needs no third party to guarantee the safety of funds;
2. Privacy protection
Monero confuses all transaction sources, amounts, and recipients through ring signatures, ring confidential transactions, and invisible addresses. Apart from all the advantages of a decentralized cryptocurrency, it is by no means inferior in safeguarding privacy;
3. Unable to track
The sender, the receiver and the transaction amount of all Monero transactions must be anonymous by default. The information on the Monero Blockchain cannot be matched with physical individuals or specific users, so there is no trace to track;
4. Scalable
Everyone knows that Bitcoin’sability to process transactions has always been limited by the scalability issue; as we have mentioned before in the introduction of Bitcoin, the block size of 1MB makes things difficult. But Monero’s developers have created a system that allows the network to process more transactions when needed; what’s more, Monero does not have any “pre-set” restrictions on block size.
Of course, this also means that some malicious miners may block the system with large blocks. To prevent this from happening, Monero has worked out countermeasures: the block reward penalty of the system.
On October 18, 2018, Monero’s latest hard fork changed the consensus mechanism algorithm to CrypotoNight V8. In this hard fork, it introduced the BulletProff bulletproof protocol, which can also effectively reduce the transaction fee of miners without disclosing transactions
It is said that Monero will issue about 18.4 million XMR in around 8 years. Moreover, it eclipses its counterparts in distribution — with no pre-mining or pre-sale, all block rewards will be left to miners by means of the POW mechanism.
Here is the reward scheme of Monero in two stages:
  1. Acceleration: mine 18132000 XMR before May 2022;
  2. Deceleration: Deceleration starts right after 18132000 XMR are mined, and there will be a reward of 0.6XMR for each block mined afterwards. In this way, the overall supply will be kept on a small scale and decelerated.
Monero is also excellent in its development concept that is designed to be anti-ASIC from the very beginning. Here is a brief introduction to ASIC (Special Application Integrated Circuit).
Due to the specificity of ASICs, specially designed ASICs can usually have much higher hashrate than general CPUs, GPUs, and even FPGAs — that makes hashrate excessively centralized and makes it vulnerable to the monopoly of single centralized institutions. Yet the cryptonight algorithm used by Monero allows most CPUs and even FPGAs to get involved and get mining rewards, instead of making GPU the only one that can efficiently mine.
In other words, Monero’s core development team will modify the consensus mechanism algorithm and have a hard fork after some time to ensure its strength against ASIC and the monopoly of hashrate.
However, although Monero has been designed against ASICs to avoid centralization, nearly 43% of its hashrate is still owned by 3 mining pools; in addition, it is not a BTC-based currency, making it even harder to introduce some elements. Of course, Monero is not that newbie-friendly, and thus has not been widely accepted.
Yet each cryptocurrency has its own features. As long as Monero keeps improving its privacy, it will definitely attract increasing followers. If you are interested in Monero, welcome to CoinEx for exchange or trade.

About CoinEx

As a global and professional cryptocurrency exchange service provider, CoinEx was founded in December 2017 with Bitmain-led investment and has obtained a legal license in Estonia. It is a subsidiary brand of the ViaBTC Group, which owns the fifth largest BTC mining pool, which is also the largest of BCH mining, in the world.
CoinEx supports perpetual contract, spot, margin trading and other derivatives trading, and its service reaches global users in nearly 100 countries/regions with various languages available, such as Chinese, English, Korean and Russian.
Website: https://www.coinex.com/
Twitter: https://twitter.com/coinexcom
Telegram: https://t.me/CoinExOfficialENG
Click here to register on CoinEx!
submitted by CoinEx_Institution to Coinex [link] [comments]

How are FPGAs used in trading?

A field-programmable gate array (FPGA) is a chip that can be programmed to suit whatever purpose you want, as often as you want it and wherever you need it. FPGAs provide multiple advantages, including low latency, high throughput and energy efficiency.
To fully understand what FPGAs offer, imagine a performance spectrum. At one end, you have the central processing unit (CPU), which offers a generic set of instructions that can be combined to carry out an array of different tasks. This makes a CPU extremely flexible, and its behaviour can be defined through software. However, CPUs are also slow because they have to select from the available generic instructions to complete each task. In a sense, they’re a “jack of all trades, but a master of none”.
At the other end of the spectrum sit application-specific integrated circuits (ASICs). These are potentially much faster because they have been built with a single task in mind, making them a “master of one trade”. This is the kind of chip people use to mine bitcoin, for example. The downside of ASICs is that they can’t be changed, and they cost time and money to develop. FPGAs offer a perfect middle ground: they can be significantly faster than a CPU and are more flexible than ASICs.
FPGAs contain thousands, sometimes even millions, of so-called core logic blocks (CLBs). These blocks can be configured and combined to process any task that can be solved by a CPU. Compared with a CPU, FPGAs aren’t burdened by surplus hardware that would otherwise slow you down. They can therefore be used to carry out specific tasks quickly and effectively, and can even process several tasks simultaneously. These characteristics make them popular across a wide range of sectors, from aerospace to medical engineering and security systems, and of course finance.
How are FPGAs used in the financial services sector?
Speed and versatility are particularly important when buying or selling stocks and other securities. In the era of electronic trading, decisions are made in the blink of an eye. As prices change and orders come and go, companies are fed new information from exchanges and other sources via high-speed networks. This information arrives at high speeds, with time measured in nanoseconds. The sheer volume and speed of data demands a high bandwidth to process it all. Specialized trading algorithms make use of the new information in order to make trades. FPGAs provide the perfect platform to develop these applications, as they allow you to bypass non-essential software as well as generic-purpose hardware.
How do market makers use FPGAs to provide liquidity?
As a market maker, IMC provides liquidity to buyers and sellers of financial instruments. This requires us to price every instrument we trade and to react to the market accordingly. Valuation is a view on what the price of an asset should be, which is handled by our traders and our automated pricing algorithms. When a counterpart wants to buy or sell an asset on a trading venue, our role is to always be there and offer, or bid, a fair price for the asset. FPGAs enable us to perform this key function in the most efficient way possible.
At IMC, we keep a close eye on emerging technologies that can potentially improve our business. We began working with FPGAs more than a decade ago and are constantly exploring ways to develop this evolving technology. We work in a competitive industry, so our engineers have to be on their toes to make sure we’re continuously improving.
What does an FPGA engineer do?
Being an FPGA engineer is all about learning and identifying new solutions to challenges as they arise. A software developer can write code in a software language and know within seconds whether it works, and so deploy it quickly. However, the code will have to go through several abstraction layers and generic hardware components. Although you can deploy the code quickly, you do not get the fastest possible outcome.
As an FPGA engineer, it may take two to three hours of compilation time before you know whether your adjustment will result in the outcome you want. However, you can increase performance at the cost of more engineering time. The day-to-day challenge you face is how to make the process as efficient as possible with the given trade-offs while pushing the boundaries of the FPGA technology.
Skills needed to be an FPGA engineer
Things change extremely rapidly in the trading world, and agility is the name of the game. Unsurprisingly, FPGA engineers tend to enjoy a challenge. To work as an FGPA engineer at a company like IMC, you have to be a great problem-solver, a quick learner and highly adaptable.
What makes IMC a great fit for an FPGA engineer?
IMC offers a great team dynamic. We are a smaller company than many larger technology or finance houses, and we operate very much like a family unit. This means that, as a graduate engineer, you’ll never be far from the action, and you’ll be able to make an impact from day one.
Another key difference is that you’ll get to see the final outcome of your work. If you come up with an idea, we’ll give you the chance to make it work. If it does, you’ll see the results put into practice in a matter of days, which is always a great feeling. If it doesn’t, you’ll get to find out why – so there’s an opportunity to learn and improve for next time.
Ultimately, working at IMC is about having skin in the game. You’ll be entrusted with making your own decisions. And you’ll be working side by side with super smart people who are open-minded and always interested in hearing your ideas. Market making is a technology-dependent process, and we’re all in this together.
Think you have what it takes to make a difference at a technology graduate at IMC? Check out our graduate opportunities page.
submitted by IMC_Trading to u/IMC_Trading [link] [comments]

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners
Thank you for inviting Horizen to the GPU mining AMA!
ZEN had a great run of GPU mining that lasted well over a year, and brought lots of value to the early Zclassic miners. It is mined using Equihash protocol, and there have been ASIC miners available for the algorithm since about June of 2018. GPU mining is not really profitable for Horizen at this point in time.
We’ve got a lot of miners in the Horizen community, and many GPU miners also buy ASIC miners. Happy to talk about algorithm changes, security, and any other aspect of mining in the questions below. There are also links to the Horizen website, blog post, etc. below.
So, if I’m not here to ask you to mine, hold, and love ZEN, what can I offer? Notes on some of the lessons I’ve learned about maximizing mining profitability. An update on Horizen - there is life after moving on from GPU mining. As well as answering your questions during the next 7 days.
_____________________________________________________________________________________________________

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Author: Rolf Versluis - co-founder of Horizen

In GPU mining, just like in many of the activities involved with Bitcoin and cryptocurrencies, there is both a cycle and a progression. The Bitcoin price cycle is fairly steady, and by creating a personal handbook of actions to take during the cycle, GPU miners can maximize their profitability.
Maximizing profitability isn't the only aspect of GPU mining that is important, of course, but it is helpful to be able to invest in new hardware, and be able to have enough time to spend on building and maintaining the GPU miners. If it was a constant process that also involved losing money, then it wouldn't be as much fun.

Technology Progression

For a given mining algorithm, there is definitely a technology progression. We can look back on the technology that was used to mine Bitcoin and see how it first started off as Central Processing Unit (CPU) mining, then it moved to Graphical Processing Unit (GPU) mining, then Field Programmable Gate Array (FPGA), and then Application Specific Integrated Circuit (ASIC).
Throughout this evolution we have witnessed a variety of unsavory business practices that unfortunately still happen on occasion, like ASIC Miner manufacturers taking pre-orders 6 months in advance, GPU manufacturers creating commercial cards for large farms that are difficult for retail customers to secure and ASIC Miner manufacturers mining on gear for months before making it available for sale.
When a new crypto-currency is created, in many cases a new mining algorithm is created also. This is important, because if an existing algorithm was used, the coin would be open to a 51% attack from day one, and may not even be able to build a valid blockchain.
Because there's such a focus on profitable software, developers for GPU mining applications are usually able to write a mining application fairly rapidly, then iterate it to the limit of current GPU technology. If it looks like a promising new cryptocurrency, FPGA stream developers and ASIC Hardware Developers start working on their designs at the same time.
The people who create the hashing algorithms run by the miners are usually not very familiar with the design capabilities of Hardware manufacturers. Building application-specific semiconductors is an industry that's almost 60 years old now, and FPGA’s have been around for almost 35 years. This is an industry that has very experienced engineers using advanced design and modeling tools.
Promising cryptocurrencies are usually ones that are deploying new technology, or going after a big market, and who have at least a team of talented software developers. In the best case, the project has a full-stack business team involving development, project management, systems administration, marketing, sales, and leadership. This is the type of project that attracts early investment from the market, which will drive the price of the coin up significantly in the first year.
For any cryptocurrency that's a worthwhile investment of time, money, and electricity for the hashing, there will be a ASIC miners developed for it. Instead of fighting this technology progression, GPU miners may be better off recognizing it as inevitable, and taking advantage of the cryptocurrency cycle to maximize GPU mining profitability instead.

Cryptocurrency Price Cycle

For quality crypto projects, in addition to the one-way technology progression of CPU -> GPU -> FPGA -> ASIC, there is an upward price progression. More importantly, there is a cryptocurrency price cycle that oscillates around an overall upgrade price progression. Plotted against time, a cycle with an upward progressions looks like a sine wave with an ever increasing average value, which is what we see so far with the Bitcoin price.

Cryptocurrency price cycle and progression for miners
This means mining promising new cryptocurrencies with GPU miners, holding them as the price rises, and being ready to sell a significant portion in the first year. Just about every cryptocurrency is going to have a sharp price rise at some point, whether through institutional investor interest or by being the target of a pump-and-dump operation. It’s especially likely in the first year, while the supply is low and there is not much trading volume or liquidity on exchanges.
Miners need to operate in the world of government money, as well as cryptocurrency. The people who run mining businesses at some point have to start selling their mining proceeds to pay the bills, and to buy new equipment as the existing equipment becomes obsolete. Working to maximize profitability means more than just mining new cryptocurrencies, it also means learning when to sell and how to manage money.

Managing Cash for Miners

The worst thing that can happen to a business is to run out of cash. When that happens, the business usually shuts down and goes into bankruptcy. Sometimes an investor comes in and picks up the pieces, but at the point the former owners become employees.
There are two sides to managing cash - one is earning it, the other is spending it, and the cryptocurrency price cycle can tell the GPU miner when it is the best time to do certain things. A market top and bottom is easy to recognize in hindsight, and harder to see when in the middle of it. Even if a miner is able to recognize the tops and bottoms, it is difficult to act when there is so much hype and positivity at the top of the cycle, and so much gloom and doom at the bottom.
A decent rule of thumb for the last few cycles appears to be that at the top and bottom of the cycle BTC is 10x as expensive compared to USD as the last cycle. Newer crypto projects tend to have bigger price swings than Bitcoin, and during the rising of the pricing cycle there is the possibility that an altcoin will have a rise to 100x its starting price.
Taking profits from selling altcoins during the rise is important, but so is maintaining a reserve. In order to catch a 100x move, it may be worth the risk to put some of the altcoin on an exchange and set a very high limit order. For the larger cryptocurrencies like Bitcoin it is important to set trailing sell stops on the way up, and to not buy back in for at least a month if a sell stop gets triggered. Being able to read price charts, see support and resistance areas for price, and knowing how to set sell orders are an important part of mining profitability.

Actions to Take During the Cycle

As the cycle starts to rise from the bottom, this is a good time to buy mining hardware - it will be inexpensive. Also to mine and buy altcoins, which are usually the first to see a price rise, and will have larger price increases than Bitcoin.
On the rise of the cycle, this is a good time to see which altcoins are doing well from a project fundamentals standpoint, and which ones look like they are undergoing accumulation from investors.
Halfway through the rise of the cycle is the time to start selling altcoins for the larger project cryptos like Bitcoin. Miners will miss some of the profit at the top of the cycle, but will not run out of cash by doing this. This is also the time to stop buying mining hardware. Don’t worry, you’ll be able to pick up that same hardware used for a fraction of the price at the next bottom.
As the price nears the top of the cycle, sell enough Bitcoin and other cryptocurrencies to meet the following projected costs:
  • Mining electricity costs for the next 12 months
  • Planned investment into new miners for the next cycle
  • Additional funds needed for things like supporting a family or buying a Lambo
  • Taxes on all the capital gains from the sale of cryptocurrencies
It may be worth selling 70-90% of crypto holdings, maintaining a reserve in case there is second upward move caused by government bankruptcies. But selling a large part of the crypto is helpful to maintaining profitability and having enough cash reserves to make it through the bottom part of the next cycle.
As the cycle has peaked and starts to decline, this is a good time to start investing in mining facilities and other infrastructure, brush up on trading skills, count your winnings, and take some vacation.
At the bottom of the cycle, it is time to start buying both used and new mining equipment. The bottom can be hard to recognize.
If you can continue to mine all the way through bottom part of the cryptocurrency pricing cycle, paying with the funds sold near the top, you will have a profitable and enjoyable cryptocurrency mining business. Any cryptocurrency you are able to hold onto will benefit from the price progression in the next higher cycle phase.

An Update on Horizen - formerly ZenCash

The team at Horizen recognizes the important part that GPU miners played in the early success of Zclassic and ZenCash, and there is always a welcoming attitude to any of ZEN miners, past and present. About 1 year after ZenCash launched, ASIC miners became available for the Equihash algorithm. Looking at a chart of mining difficulty over time shows when it was time for GPU miners to move to mining other cryptocurrencies.

Horizen Historical Block Difficulty Graph
Looking at the hashrate chart, it is straightforward to see that ASIC miners were deployed starting June 2018. It appears that there was a jump in mining hashrate in October of 2017. This may have been larger GPU farms switching over to mine Horizen, FPGA’s on the network, or early version of Equihash ASIC miners that were kept private.
The team understands the importance of the cryptocurrency price cycle as it affects the funds from the Horizen treasury and the investments that can be made. 20% of each block mined is sent to the Horizen non-profit foundation for use to improve the project. Just like miners have to manage money, the team has to decide whether to spend funds when the price is high or convert it to another form in preparation for the bottom part of the cycle.
During the rise and upper part of the last price cycle Horizen was working hard to maximize the value of the project through many different ways, including spending on research and development, project management, marketing, business development with exchanges and merchants, and working to create adoption in all the countries of the world.
During the lower half of the cycle Horizen has reduced the team to the essentials, and worked to build a base of users, relationships with investors, exchanges, and merchants, and continue to develop the higher priority software projects. Lower priority software development, going to trade shows, and paying for business partnerships like exchanges and applications have all been completely stopped.
Miners are still a very important part of the Horizen ecosystem, earning 60% of the block reward. 20% goes to node operators, with 20% to the foundation. In the summer of 2018 the consensus algorithm was modified slightly to make it much more difficult for any group of miners to perform a 51% attack on Horizen. This has so far proven effective.
The team is strong, we provide monthly updates on a YouTube live stream on the first Wednesday of each month where all questions asked during the stream are addressed, and our marketing team works to develop awareness of Horizen worldwide. New wallet software was released recently, and it is the foundation application for people to use and manage their ZEN going forward.
Horizen is a Proof of Work cryptocurrency, and there is no plan to change that by the current development team. If there is a security or centralization concern, there may be change to the algorithm, but that appears unlikely at this time, as the hidden chain mining penalty looks like it is effective in stopping 51% attacks.
During 2019 and 2020 the Horizen team plans to release many new software updates:
  • Sidechains modification to main software
  • Sidechain Software Development Kit
  • Governance and Treasury application running on a sidechain
  • Node tracking and payments running on a sidechain
  • Conversion from blockchain to a Proof of Work BlockDAG using Equihash mining algorithm
After these updates are working well, the team will work to transition Horizen over to a governance model where major decisions and the allocation of treasury funds are done through a form of democratic voting. At this point all the software developed by Horizen is expected to be open source.
When the governance is transitioned, the project should be as decentralized as possible. The goal of decentralization is to enable resilience and preventing the capture of the project by regulators, government, criminal organizations, large corporations, or a small group of individuals.
Everyone involved with Horizen can be proud of what we have accomplished together so far. Miners who were there for the early mining and growth of the project played a large part in securing the network, evangelizing to new community members, and helping to create liquidity on new exchanges. Miners are still a very important part of the project and community. Together we can look forward to achieving many new goals in the future.

Here are some links to find out more about Horizen.
Horizen Website – https://horizen.global
Horizen Blog – https://blog.horizen.global
Horizen Reddit - https://www.reddit.com/Horizen/
Horizen Discord – https://discord.gg/SuaMBTb
Horizen Github – https://github.com/ZencashOfficial
Horizen Forum – https://forum.horizen.global/
Horizen Twitter – https://twitter.com/horizenglobal
Horizen Telegram – https://t.me/horizencommunity
Horizen on Bitcointalk – https://bitcointalk.org/index.php?topic=2047435.0
Horizen YouTube Channel – https://www.youtube.com/c/Horizen/
Buy or Sell Horizen
Horizen on CoinMarketCap – https://coinmarketcap.com/currencies/zencash/

About the Author:

Rolf Versluis is Co-Founder and Executive Advisor of the privacy oriented cryptocurrency Horizen. He also operates multiple private cryptocurrency mining facilities with hundreds of operational systems, and has a blog and YouTube channel on crypto mining called Block Operations.
Rolf applies his engineering background as well as management and leadership experience from running a 60 person IT company in Atlanta and as a US Navy nuclear submarine officer operating out of Hawaii to help grow and improve the businesses in which he is involved.
_____________________________________________________________________________________________
Thank you again for the Ask Me Anything - please do. I'll be checking the post and answering questions actively from 28 Feb to 6 Mar 2019 - Rolf
submitted by Blockops to gpumining [link] [comments]

Continued censorship involving Ethereum's proposed fork to progPOW.

Our friends at Ethereum are subject to continued manipulation into forking their coin to progPOW. I decided to post this in /btc because it is the last bastion of free speech in the crypto community.
Today, after drawing attention to the sketchy history of progPOW's original proponent, my post was subjected to massive vote manipulation, and eventually deleted.
I have long suspected that progPOW favors NVIDIA miners, given the deep connections that progPOW's development team has to NVIDIA. Today, the progPOW team freely admitted that AMD miners will suffer a larger hashrate decrease compared to NVIDIA miners, so I created a poll:
Ethereum developers want to fork to ETH to progPOW [1], a proof-of-work algorithm that gives AMD GPUs a stronger hashrate penalty compared to NVIDIA [2][3]. Should Ethereum use ProgPOW for Proof-of-Work? Cast your vote with Ethereum [4].
Sources:
Below is my post that was deleted, in its entirety.
If you are curious about the CSW/Coingeek connection, scroll down.
Previous Posts
Criticism and Soft Power
I have received criticism for my posts mostly due to what people call "character attacks." I have two things to say about that:
  1. I have never engaged in any character attacks. In all cases, the character has made their modus operandi known by themselves, and I have simply shined a light on it. I don't need call people "mentally unstable gentlemen" [--source, Ohgodagirl Twitter] to get my point across.
  2. Algorithm change discussions must include economic and political introspection as well as a discussion of the proposed change's technical details. As I have stated before, progPOW would not exist without the people responsible for creating it. We must look at these people's history, character, prior accomplishments, and industry connections. The discussion must exist outside the scope of the proposed change, not inside of it.
Example: When people criticize my posts for "not looking at the technical details", they are making a mistake. If someone asked "which should we kill more often: baby seals or baby kittens?", we don't all immediately start discussing the optimal relation of kittens-per-second to seals-per-second that can be killed. No, our first reaction is "what the fuck, why should we kill anything?"
Onward
Customer complaints from people who bought cloud contracts from Kristy's previous company:
Coingeek Connection
Previously, I had promised to provide information regarding the CSW/Coingeek and Core Scientific connection.
When I was president of ImageShack.com (2003-2011), someone wanted to buy our company. When this happens, the buyer and seller usually write a purchase agreement similar to the business in which they are involved. This is done to ensure that the purchase is executed. In ImageShack's case, the buyer bought $500,000 worth of advertising from us. The logic was that ImageShack would be acquired, so they actually would pay themselves. If they didn't buy ImageShack, they would owe us $500,000.
Given the partnership between Core Scientific (Kristy's employer) and "Squire Mining" (effectively, Coingeek), I would not be surprised if Coingeek and Core Scientific made such an agreement, as well. In their case, it would likely be a hosting agreement. Since Coingeek has many ASICs, and Core Scientific is a large mining facility, I would not be surprised if those Coingeek ASICs are hosted by Core Scientific.
Individuals close to these parties can verify those claims, but I cannot share the proof at this time without revealing the identity of my sources.
Chatlog Dumps
Today, I also provide public comments from chatlog dumps showcasing Kristy Leigh Anne Minehan's deep connection to NVIDIA:
01/28/2018 - 22:34<@OhGodAGirl> Yo. ystarnaud/sling00: **I'll be meeting NV next week**. I think it's next week. The 4th! Anyway; if you have NVIDIA fixes you need for EthOS or something you want special attention on, PM me. 02/05/2018 - 06:47<@OhGodAGirl> Also I got a USB shaped like a NVIDIA GTX. It's the best thing ever. 02/05/2018 - 06:50<@OhGodAGirl> https://usercontent.irccloud-cdn.com/file/ffwT8M2j/IMG_2726.JPG 02/05/2018 - 06:50<@OhGodAGirl> Look at this adorable little shit. 
"Ah, but there's a catch. These USB drives are extremely rare—Nvidia only cranked out a couple thousand of these drives and will be giving them away to press and "influencers" at E3, along with 1,080 registered GeForce Experience members who are opted in to receive communications from Nvidia."
04/22/2018 - 20:17<@sling00> OhGodAGirl: what does ohgodanethlargement do 04/22/2018 - 20:17< cYnIxX3> https://youtu.be/2mj1nCfFvlI?t=2m16s 04/22/2018 - 20:19< cYnIxX3> sling00, about 10-25mh improvement to 1080 gpus. 04/22/2018 - 20:19< __virus__> about 40-50% improvement afaik 04/22/2018 - 20:21< OhGodAGirl> But...it's not under because NVIDIA asked me not to. 04/21/2018 - 16:51< OhGodAGirl> I have a ton of private tools for Mineority 04/21/2018 - 16:51< OhGodAGirl> Right now our Equihash kernel has a 25% advantage over Claymore. 04/21/2018 - 16:52< PL3> 25% on amds? 04/21/2018 - 16:52< OhGodAGirl> NVIDIA ;) 04/21/2018 - 16:52< PL3> you have claymore nvidia equi miner? 04/21/2018 - 16:52< OhGodAGirl> We're a NV only company. For now. 04/29/2018 - 00:53< OhGodAGirl> So uh, NVIDIA showed ETHlargement at an executive meeting 04/29/2018 - 00:53< OhGodAGirl> They thought it was hillarious 04/29/2018 - 00:53< acv_> that is awesome. 04/29/2018 - 01:22< OhGodAGirl> So many dicks on Youtube though 04/29/2018 - 01:22< OhGodAGirl> "RA RA IT'S A SCAM" 04/29/2018 - 01:22< OhGodAGirl> "RA RA IT WILL STEAL ALL YOUR PRIVKEYS" 04/29/2018 - 01:22< OhGodAGirl> "RA RA NO ONE IS EVER NICE IN THIS WORLD' 04/29/2018 - 01:22< OhGodAGirl> Well dammit I'm a nice person. =( 
submitted by ugtarmas to btc [link] [comments]

An Open Source GPU

An Open Source GPU submitted by veive to technology [link] [comments]

Electroneum Fork 324500

Source: https://www.facebook.com/electroneum/posts/2030562537205714
Hi Everyone!
ALL ELECTRONEUM NODE OWNERS MUST UPDATE THEIR SOFTWARE BY BLOCK 324500 (approx. 36 hours from now – this is an URGENT UPDATE – PLEASE SHARE THIS INFORMATION)
We have an urgent software update below for anyone who runs a full Electroneum Node. If you don’t know what a node is , don’t worry! You won’t need to do anything.
We also have a VERY exciting update about an upcoming listing on a top 10 exchange.
How will I mine Electroneum after this update?
Instant Payment vendor API is open for BETA applicants.How can ETN change the world?
Please note that nothing in this message refers to MOBILE MINING – we are referring to the underlying blockchain miners.
Urgent Electroneum Node / RPC / Command Line Wallet Update
ALL ELECTRONEUM NODE OWNERS MUST UPDATE THEIR SOFTWARE BY BLOCK 324500 (approx. 36 hours from now – this is an URGENT UPDATE – PLEASE SHARE THIS INFORMATION)
https://github.com/electron…/electroneum/releases/…/v2.1.0.0
It’s only been a few short days since I made a video and said “our fork went well! We’re ready for 20m Users!”.
The fork was a great success, from a technical standpoint. Unfortunately, we never got back the number of GPU miners that are needed to ensure our network runs smoothly and has stable block emission. A new phenomenon has emerged where a number of users are mining Electroneum in waves. They come on and then leave after a few hours in a coordinated manner to mine ETN in a completely selfish way. We can’t blame people for maximizing their profit, but we have not built up the amount of “hashing power” that is required to make this impossible and create the stability we need in the network.
This has left us at risk. As such, we have to take urgent action to stabilise our network and protect the Electroneum community.
Coinbene Listing Electroneum & our network stability
We have formally agreed and signed contracts to be listed in July on the AWESOME, top 10, cryptocurrency exchange https://Coinbene.com & https://Coinbene.com.br
Coinbene have 1.5m active users and are a GREAT fit for Electroneum. Their primary markets are Latin America and Asia – which fits perfectly with Electroneum’s customer base. They have seen enormous growth over the last few months and have been very positive about the Electroneum Project.
Whilst this is great news, we will need much more hashing power to ensure we have network stability for our listing on this exchange, so we’ve taken the decision that we can’t wait any longer for GPU miners to return to us and we must run an urgent software update to re-introduce ASIC mining to Electroneum.
This is a very positive move for Electroneum. A great deal of Bitcoin’s trust and appeal is from the enormous hashing power and distribution of miners on the network. Bitcoin & LiteCoin have embraced ASICs and we feel that it is the right thing for Electroneum to do the same.
ASICS are becoming more prevalent, they cost considerably less to run than a GPU rig and use a fraction of the electricity. We are going to encourage more ASIC ownership and take our hashing rate up to (and beyond) the enormous levels of hashing power that we had before the May fork.
There is a further development. The first generation of hardware called an FPGA miner is arriving during 2018 and they make ANTI-ASIC capabilities a thing of the past, as they circumvent the slow delivery time of new ASICs by being re-programmable. If we are ready to embrace these rather than fight them, our network hashing power is increased further and our network stability and security is further enhanced.
Because ASICS run cooler, quieter and use a fraction of GPU rig power, they are suitable for MORE people to run in their homes. If you are interested, a search of “Cryptonight ASIC miner” in Google or Ebay will find the equipment needed to mine Electroneum. You will need to be reasonably technical to achieve this!
Having a stable network is absolutely key to both delivering mass adoption and to ensure we have a great relationship with the great exchanges that we’re already listed with, and to encourage more of the larger exchanges to see Electroneum as a coin that they want on board.
How will I mine Electroneum after this update?
If you are a mobile miner – nothing changes. If you are a GPU or ASIC miner then you’ll need to connect to an Electroneum pool but it is important to note that you will need to change your ALGORITHM. You MUST use the algorithm “Cryptonight” and NOT “Electroneum” or “CryptonightV7”. This will ensure your device works after the update. We will communicate this to all pools, but if you are a member of a mining pool – PLEASE LET THE ADMINS KNOW ABOUT THIS CRITICAL UPDATE. They must update their pool node by block 324500, which is only around 36 hours away.
Instant Payment vendor API is open for BETA applicants
Instant Cryptocurrency Payments via smart phone has always been a critical part of what Electroneum required to achieve mass market adoption. It’s never been done, but 9 short months after our ICO we are excited to announce that we have opened to the doors to vendors who would like to accept payment via Electroneum. The application is to be part of the BETA rollout of instant payment, but will operate on the live blockchain with real ETN!
If you run a business or know someone who does – why not recommend they apply to accept ETN. The Press and Marketing opportunities for the first, in any sector, to accept cryptocurrency are huge! Be part of the instant payment API BETA program by completing this form:
https://docs.google.com/…/1FAIpQLSfKTwWT7W4ltmApZO…/viewform
How can ETN change the world?
Instant payment does far more than allow people to pay for their coffee with crypto instead of their VISA card.
If you’d like to know more about Electroneum’s future I suggest you read a fantastic article that describes its coming role in the world, by fellow director Chris Gorman OBE (Officer of the British Empire – awarded by the Queen of England!): https://www.linkedin.com/…/how-cryptocurrency-enable-financ…
Electroneum has one of the largest of all cryptocurrency communities and it is made up of passionate and amazing people. With your support and world changing things we have coming out over the next few weeks, we can use this update to make our blockchain foundation secure and lead the world in mobile cryptocurrency.
I'm sure you agree that we've been through some challenging times which our team have always dealt with and learned from. The strength and support from our community and many of our goals becoming a reality combined with this blockchain update will give us the perfect foundation to deliver the Electroneum vision that we all share.
Thanks for taking the time to read this long message.
Have a great day everyone,
Richard Ells
Founder, Electroneum.com
submitted by MulatuTesh to Electroneum [link] [comments]

Mining ERC-918 Tokens (0xBitcoin)

GENERAL INFORMATION

0xBitcoin (0xBTC) is the first mineable ERC20 token on Ethereum. It uses mining for distribution, unlike all previous ERC20 tokens which were assigned to the contract deployer upon creation. 0xBTC is the first implementation of the EIP918 mineable token standard (https://eips.ethereum.org/EIPS/eip-918), which opened up the possibility of a whole new class of mineable assets on Ethereum. Without any ICO, airdrop, pre-mine, or founder’s reward, 0xBitcoin is arguably the most decentralized asset in the Ethereum ecosystem, including even Ether (ETH), which had a large ICO.
The goal of 0xBitcoin is to be looked at as a currency and store of value asset on Ethereum. Its 21 million token hard cap and predictable issuance give it scarcity and transparency in terms of monetary policy, both things that Ether lacks. 0xBitcoin has certain advantages over PoW based currencies, such as compatibility with smart contracts and decentralized exchanges. In addition, 0xBTC cannot be 51% attacked (without attacking Ethereum), is immune from the “death spiral”, and will receive the benefits of scaling and other improvements to the Ethereum network.

GETTING 0xBITCOIN TOKENS

0xBitcoin can be mined using typical PC hardware, traded on exchanges (either decentralized or centralized) or purchased from specific sites/contracts.

-Mined using PC hardware

-Traded on exchanges such as


MINING IN A NUTSHELL

0xBitcoin is a Smart Contract on the Ethereum network, and the concept of Token Mining is patterned after Bitcoin's distribution. Rather than solving 'blocks', work is issued by the contract, which also maintains a Difficulty which goes up or down depending on how often a Reward is issued. Miners can put their hardware to work to claim these rewards, in concert with specialized software, working either by themselves or together as a Pool. The total lifetime supply of 0xBitcoin is 21,000,000 tokens and rewards will repeatedly halve over time.
The 0xBitcoin contract was deployed by Infernal_Toast at Ethereum address: 0xb6ed7644c69416d67b522e20bc294a9a9b405b31
0xBitcoin's smart contract, running on the Ethereum network, maintains a changing "Challenge" (that is generated from the previous Ethereum block hash) and an adjusting Difficulty Target. Like traditional mining, the miners use the SoliditySHA3 algorithm to solve for a Nonce value that, when hashed alongside the current Challenge and their Minting Ethereum Address, is less-than-or-equal-to the current Difficulty Target. Once a miner finds a solution that satisfies the requirements, they can submit it into the contract (calling the Mint() function). This is most often done through a mining pool. The Ethereum address that submits a valid solution first is sent the 50 0xBTC Reward.
(In the case of Pools, valid solutions that do not satisfy the full difficulty specified by the 0xBitcoin contract, but that DO satisfy the Pool's specified Minimum Share Difficulty, get a 'share'. When one of the Miners on that Pool finds a "Full" solution, the number of shares each miner's address has submitted is used to calculate how much of the 50 0xBTC reward they will get. After a Reward is issued, the Challenge changes.
A Retarget happens every 1024 rewards. In short, the Contract tries to target an Average Reward Time of about 60 times the Ethereum block time. So (at the time of this writing):
~13.9 seconds \* 60 = 13.9 minutes
If the average Reward Time is longer than that, the difficulty will decrease. If it's shorter, it will increase. How much longer or shorter it was affects the magnitude with which the difficulty will rise/drop, to a maximum of 50%. * Click Here to visit the stats page~ (https://0x1d00ffff.github.io/0xBTC-Stats) to see recent stats and block times, feel free to ask questions about it if you need help understanding it.

MINING HARDWARE

Presently, 0xBitcoin and "Alt Tokens" can be mined on GPUs, CPUs, IGPs (on-CPU graphics) and certain FPGAs. The most recommended hardware is nVidia graphics cards for their efficiency, ubiquity and relatively low cost. As general rules, the more cores and the higher core frequency (clock) you can get, the more Tokens you will earn!
Mining on nVidia cards:
Mining on AMD cards:
Mining on IGPs (e.g. AMD Radeon and Intel HD Graphics):
Clocks and Power Levels:

MINING SOFTWARE AND DESCRIPTIONS

For the most up-to-date version info, download links, thread links and author contact information, please see this thread: https://www.reddit.com/0xbitcoin/comments/8o06dk/links_to_the_newestbest_miners_for_nvidia_amd/ Keep up to date for the latest speed, stability and feature enhancements!
COSMiC Miner by LtTofu:
SoliditySha3Miner by Amano7:
AIOMiner All-In-One GPU Miner:
TokenMiner by MVis (Mining-Visualizer):
"Nabiki"/2.10.4 by Azlehria:
~Older Miners: Older and possibly-unsupported miner versions can be found at the above link for historical purposes and specific applications- including the original NodeJS CPU miner by Infernal Toast/Zegordo, the '1000x' NodeJS/C++ hybrid version of 0xBitcoin-Miner and Mikers' enhanced CUDA builds.

FOR MORE INFORMATION...

If you have any trouble, the friendly and helpful 0xBitcoin community will be happy to help you out. Discord has kind of become 0xBTC's community hub, you can get answers the fastest from devs and helpful community members. Or message one of the community members on reddit listed below.
Links
submitted by GeoffedUP to gpumining [link] [comments]

Best $100-$300 FPGA development board in 2018?

Hello, I’ve been trying to decide on a FPGA development board, and have only been able to find posts and Reddit threads from 4-5 years ago. So I wanted to start a new thread and ask about the best “mid-range” FGPA development board in 2018. (Price range $100-$300.)
I started with this Quora answer about FPGA boards, from 2013. The Altera DE1 sounded good. Then I looked through the Terasic DE boards.
Then I found this Reddit thread from 2014, asking about the DE1-SoC vs the Cyclone V GX Starter Kit: https://www.reddit.com/FPGA/comments/1xsk6w/cyclone_v_gx_starter_kit_vs_de1soc_board/‬ (I was also leaning towards the DE1-SoC.)
Anyway, I thought I better ask here, because there are probably some new things to be aware of in 2018.
I’m completely new to FPGAs and VHDL, but I have experience with electronics/microcontrollers/programming. My goal is to start with some basic soft-core processors. I want to get some C / Rust programs compiling and running on my own CPU designs. I also want to play around with different instruction sets, and maybe start experimenting with asynchronous circuits (e.g. clock-less CPUs)
Also I don’t know if this is possible, but I’d like to experiment with ternary computing, or work with analog signals instead of purely digital logic. EDIT: I just realized that you would call those FPAAs, i.e. “analog” instead of “gate”. Would be cool if there was a dev board that also had an FPAA, but no problem if not.
EDIT 2: I also realized why "analog signals on an FPGA" doesn't make any sense, because of how LUTs work. They emulate boolean logic with a lookup table, and the table can only store 0s and 1s. So there's no way to emulate a transistor in an intermediate state. I'll just have play around with some transistors on a breadboard.
UPDATE: I've put together a table with some of the best options:
Board Maker Chip LUTs Price SoC? Features
icoBoard Lattice iCE40-HX8K 7,680 $100 Sort of A very simple FPGA development board that plugs into a Raspberry Pi, so you have a "backup" hard-core CPU that can control networking, etc. Supports a huge range of pmod accessories. You can write a program/circuit so that the Raspberry Pi CPU and the FPGA work together, similar to a SoC. Proprietary bitstream is fully reverse engineered and supported by Project IceStorm, and there is an open-source toolchain that can compile your hardware design to bitstream. Has everything you need to start experimenting with FPGAs.
iCE40-HX8K Breakout Board Lattice iCE40-HX8K-CT256 7,680 $49 No 8 LEDs, 8 switches. Very similar to icoBoard, but no Raspberry Pi or pmod accessories.
iCE40 UltraPlus Lattice iCE40 UltraPlus FPGA 5280 $99 No Chip specs. 4 switchable FPGAs, and a rechargeable battery. Bluetooth module, LCD Display (240 x 240 RGB), RGB LED, microphones, audio output, compass, pressure, gyro, accelerometer.
Go Board Lattice ICE40 HX1K FPGA 1280 $65 No 4 LEDs, 4 buttons, Dual 7-Segment LED Display, VGA, 25 MHz on-board clock, 1 Mb Flash.
snickerdoodle Xilinx Zynq 7010 28K $95 Yes Xilinx Zynq 7-Series SoC - ARM Cortex-A9 processor, and Artix-7 FPGA. 125 IO pins. 1GB DDR2 RAM. Texas Instruments WiLink 8 wireless module for 802.11n Wi-Fi and Bluetooth 4.1. No LEDs or buttons, but easy to wire up your own on a breadboard. If you want to use a baseboard, you'll need a snickerdoodle black ($195) with the pins in the "down" orientation. (E.g. The "breakyBreaky breakout board" ($49) or piSmasher SBC ($195)). The snickerdoodle one only comes with pins in the "up" orientation and doesn't support any baseboards. But you can still plug the jumpers into the pins and wire up things on a breadboard.
numato Mimas A7 Xilinx Artix 7 52K $149 No 2Gb DDR3 RAM. Gigabit Ethernet. HDMI IN/OUT. 100MHz LVDS oscillator. 80 IOs. 7-segment display, LEDs, buttons. (Found in this Reddit thread.)
Ultra96 Xilinx Zynq UltraScale+ ZU3EG 154K $249 Yes Has one of the latest Xilinx SoCs. 2 GB (512M x32) LPDDR4 Memory. Wi-Fi / Bluetooth. Mini DisplayPort. 1x USB 3.0 type Micro-B, 2x USB 3.0 Type A. Audio I/O. Four user-controllable LEDs. No buttons and limited LEDs, but easy to wire up your own on a breadboard
Nexys A7-100T Xilinx Artix 7 15,850 $265 No . 128MiB DDR2 RAM. Ethernet port, PWM audio output, accelerometer, PDM microphone, microphone, etc. 16 switches, 16 LEDs. 7 segment displays. USB HID Host for mice, keyboards and memory sticks.
Zybo Z7-10 Xilinx Zynq 7010 17,600 $199 Yes Xilinx Zynq 7000 SoC (ARM Cortex-A9, 7-series FPGA.) 1 GB DDR3 RAM. A few switches, push buttons, and LEDs. USB and Ethernet. Audio in/out ports. HDMI source + sink with CEC. 8 Total Processor I/O, 40 Total FPGA I/O. Also a faster version for $299 (Zybo Z7-20).
Arty A7 Xilinx Artix 7 15K $119 No 256MB DDR3L. 10/100 Mbps Ethernet. A few switches, buttons, LEDs.
DE10-Standard (specs) Altera Cyclone V 110K $350 Yes Dual-core Cortex-A9 processor. Lots of buttons, LEDs, and other peripherals.
DE10-Nano Altera Cyclone V 110K $130 Yes Same as DE10-Standard, but not as many peripherals, buttons, LEDs, etc.

Winner:

icoBoard ($100). (Buy it here.)
The icoBoard plugs into a Raspberry Pi, so it's similar to having a SoC. The iCE40-HX8K chip comes with 7,680 LUTs (logic elements.) This means that after you learn the basics and create some simple circuits, you'll also have enough logic elements to run the VexRiscv soft-core CPU (the lightweight Murax SoC.)
The icoBoard also supports a huge range of pluggable pmod accessories:
You can pick whatever peripherals you're interested in, and buy some more in the future.
Every FPGA vendor keeps their bitstream format secret. (Here's a Hacker News discussion about it.) The iCE40-HX8K bitstream has been fully reverse engineered by Project IceStorm, and there is an open-source set of tools that can compile Verilog to iCE40 bitstream.
This means that you have the freedom to do some crazy experiments, like:
You don't really have the same freedom to explore these things with Xilinx or Altera FPGAs. (Especially asynchronous circuits.)

Links:

Second Place:

iCE40-HX8K Breakout Board ($49)

Third Place:

numato Mimas A7 ($149).
An excellent development board with a Xilinx Artix 7 FPGA, so you can play with a bigger / faster FPGA and run a full RISC-V soft-core with all the options enabled, and a much higher clock speed. (The iCE40 FPGAs are a bit slow and small.)
Note: I've changed my mind several times as I learned new things. Here's some of my previous thoughts.

What did I buy?

I ordered a iCE40-HX8K Breakout Board to try out the IceStorm open source tooling. (I would have ordered an icoBoard if I had found it earlier.) I also bought a numato Mimas A7 so that I could experiment with the Artix 7 FPGA and Xilinx software (Vivado Design Suite.)

Questions

What can I do with an FPGA? / How many LUTs do I need?

submitted by ndbroadbent to FPGA [link] [comments]

Ritocoin - a 100% community driven project based on Ravencoin


tl:dr: Ritocoin is a code fork of the Ravencoin codebase and continues to track future Ravencoin developments. The project was launched to provide a more community-oriented blockchain with the same functionality as Ravencoin, without a corporate overseer, and with a more flexible model for community participation and development. It’s intention is to be a hacker’s playground for innovative ideas.

Specifications

Proof-of-Work Algorithm: X21S
Block Time: 60 seconds
POW Block Reward: Smooth curve down
Community fund: 1% first year
Difficulty Retargeting: DGW-180
Maximum Supply:
6 months: 993,521,892 RITO
1 year: 1,227,448,858 RITO
5 years: 1,762,210,058 RITO
10 years: 1,820,404,381 RITO
50 years: 2,030,907,256 RITO
100 years: 2,293,707,246 RITO
Infinite: 10 RITO per block in perpetuity

Pre-mine: None
Masternodes: Researching for use case
Asset layer: Was enabled at height 50,000

Links
Website
/ritocoin
Explorer
Github
Whitepaper
twitter
[ANN]

X21S

This hashing algorithm was created specifically for Ritocoin, and was designed to resist FPGAs, ASICs, and NiceHash. It is X16S (16 algorithms shuffled and hashed),, followed by 5 additional hashing algorithms: haval256, tiger, lyra2, gost512, and sha256. The inclusion of lyra2 brings numerous advantages, making parallelization of the algorithm practically impossible, with each step relying on the previous step having already been computed. It is a “friendly” algorithm that makes GPUs produce much less heat and uses less electricity during mining.

Take your time to learn more about us in the below story of Ritocoin...

The spirit of Bitcoin continues to inspire, empower and enable people around the globe. Ten years later, just as it seemed Bitcoin was being defined by commercial agents and regulated governance, that same free and independent spirit imbued the Ravencoin community. In ten short months, however, 30% of the Ravencoin project’s net hash comes from NiceHash and the looming impact of the imminent FPGA mining cards and X16R bitstreams certainly promises to shake up the dream of this GPU miner’s darling.

Ravencoin’s fair launch genuinely inspired our developers and supporters. We admire the way Ravencoin came out swinging — fighting for fairness, an honest distribution of coins and a place where GPU miners could thrive. The asset layer attracted many more miners and investors to the pools. Many Ritocoin enthusiasts came from the Ravencoin community, and continue their association with that project.

The whole crypto ecosystem should appreciate the work begun by Ravencoin. Obviously they continue to inspire and motivate us to this day. It’s the reason we took action. We decided to start our own project which focuses upon at least two pillars of decentralized networks in the crypto space: community governance and a fair distribution of coins. It is a core belief throughout Ritocoin that in order to successfully develop and maintain this hacker’s playground — a place where a broad range of ideas could be tried and allowed to flourish — these two ideals must be allowed to drive and guide our community.

This deep focus on community choices creates a project flexible enough to support most ideas, and agile enough to define new frontiers.

A mining network’s distributed ledger is defined by its technology. Like many in the broader crypto-mining community, we value the GPU for its accessibility. These processors are available for purchase all around the world without any legal restrictions. GPUs are vastly more accessible for hobbyists and miners to acquire. They can be shipped nearly anywhere around the globe, a nice benefit to the popular secondary market which has sprung up much to the chagrin of PC gamers.

More constraints exist for the ASIC and FPGA miner. Laws in some parts of the world restrict people from using or buying ASIC and FPGA mining hardware. This alone is directly in confrontation with Ritocoin’s core values of decentralized stewardship and sovereignty.

The GPU, in essence, is like your voice. Anyone with the means of acquiring one GPU should be able to have their voice heard. ASIC and FPGA mining devalues the GPU miner’s voice and silos that coin’s network away from the small scale and personal mining operator. A truly community driven project means each stakeholder, regardless of size of contribution to the network’s net hash, has an opportunity to build, vote and direct.

If you are already familiar with our website, discord or whitepaper, you are probably aware that masternodes had been proposed as a feature of the network from the beginning. This opened the door to ongoing discussions in the Ritocoin community regarding

● A masternode’s true purpose

● What benefit they provide to the project

● How the benefit is realized

● The collateral

This discussion, governed entirely by stakeholders across the extended network yielded a defining moment for our vision of flexibility. We have not yet found the potential utility of masternodes, however, the conversation has not reached an extent to where we could abandon the idea. To quote one of our developers during this discussion on our Discord:

“Just want to give a reminder here that even though masternodes are on the roadmap, it is not set in stone. This coin belongs to the community and we will do what we as a community want to do. If we conclude that we want to take this coin a different direction than masternodes, then that is what we’ll do.” --traysi

We are all volunteers at Ritocoin. Our moderators and community leaders try to give immediate support to all users that require it. Contact us in Discord or Telegram, not only for support, but, proposing new ideas, revising old ones and just so you can find a place to get together and find people to hang out with. You are well within your rights to enjoy yourself at any given moment, and, should you feel so inclined to begin working with the team, we just so happen to be looking for ambitious individuals that see themselves as being part of a greater vision, are inspired by change, and inspired to be the change they want to see making things better in this world.

Join us in a space where your ideas to build something great can become a reality. We are eager to know what you think is best for the future of Rito. What steps would you take to become more resilient, stronger, fair and decentralized? Because at the end of the day, like it or not, love it or leave it.. this is your coin, too.

You can become a significant part of this project. We will help you further develop the role you wish to fill in the cryptocurrency space — influencer, developer, analyst, you name it. This is not a just-for-developer’s playground. We want the enthusiasts. We want the perplexed and the rabbit-hole divers. This is the coin for everyone who is trying to find their place on the path that Satoshi began unfolding in 2008 after the collapse of the housing market rippled out into the subsequent crash of global markets. That’s why we have Bitcoin, remember? Be your own bank. This is why Satoshi and Bitcoin.org kept their software open source. It’s up to us to keep the torch ablaze.

Community funds

For the first year, about 1% of mined coins are set aside into a developers fund that is used to provide bounties to the community developers who make substantial development contributions to the Ritocoin ecosystem. We have already paid out numerous bounties for important work that has already benefits Ritocoin in substantial ways. We also have another donation-driven community fund that has recently been put together for the purposes of doing fun contests and things like that.

Cooperation and collaborations

We have discovered a number of fatal flaws in the original Ravencoin codebase and worked with the Ravencoin developers to get those fixed in both Ritocoin and Ravencoin. This work has benefitted Ravencoin in numerous ways and we look forward to a long time of collaboration and cooperation between us and them. Many members of the Safecoin team are also in our discord group, and have collaborated with us in shaping the future decisions of Ritocoin. We have several thousand members in our group and they represent all walks of cryptocurrency life. We invite all coin developers, miners and enthusiasts to join our discord and be a part of this coin that truly belongs entirely to the community.

Block reward

A couple weeks ago we met for a scheduled meeting in our discord group and had a lengthy conversation about the block reward. Our block reward started at 5,000 RITO per block (every 60 seconds) just like Ravencoin. This extremely high number of coins coupled with the high profitability of mining led to unforeseen consequences with pools auto-exchanging the coin into bitcoin. This dumping by non-community miners had a very negative impact on the community sentiment and morale, as we watched the exchange price plunge. We looked at other coins and realized that this fate has befell many other coins with high block rewards. Following much discussion, we decided to change the reward structure. Starting around March 19th the block rewards will start to slowly go down in a curve until it reaches 1,000. Then the reduction will be even more slowed down with block rewards exponentially dropping at periodic intervals. We have posted charts on our website that shows what the long-term effects of our reward reducing algorithms will be. As a miner, the next 2 months will be a great time to mine and hold, while the block reward is still fairly high. We encourage all miners and cryptocurrency enthusiasts to take advantage of the current favourable block reward and build a nice holding for yourself. Then join the community and be a part of the fun we’re having with this project.
This post was prepared by a collaboration of multiple Ritocoin members and was posted to reddit by the core developer Trevali, who posts to reddit under the ritocoin username and will be very happy to answer any questions anybody may have about our project. Traysi (well known in the Ravencoin community) is also an active Ritocoin developer and may come to this thread if needed.
We welcome any questions from any of you regarding our project!
submitted by ritocoin to gpumining [link] [comments]

Potenital cons(risks) of ravencoin?

Hi. I am one RVN hodler in Korean Crypto investment community.
I understand that ravencoin has huge potential in term of becoming good assets platform, and making good profit in the future.
But, I just want to hear thoughts from you guys about potential cons(risks) of ravencoin blockchain.
Sorry for wrong English grammar. English is not my mother language :)

1) Absence of smart contract. I think smart contract is a key feature of future digital finance based on distributed ledger. But ravencoin is a Bitcoin code fork so has very limited smart contract function. White paper just mentioned about smart contract that it might be implemented on the 2nd layer. It seems that main developers' priority is developing other things mentioned in the roadmap, not smart contract.

2) Absence of Privacy. Corporates and financial institutions usually do not prefer every transaction being exposed to the public. They definitely want privacy when dealing in confidential contracts and transactions. Like smarts contract, adding privacy function seems not one of top development priority. Just calling for other developers to develop it.

3) x16r FPGA mining is on operation already and better FPGA chips are under development by hidden players. These equipments are not very available on the public yet. It means some mining whales are already exist, like Bitmain's ASIC mining in early days of Bitcoin. This phenomenon may lead to mining centralization like bitcoin blockchain in the future.

4) In the future, mining centralization may cause chain split, the hard fork. Because ravencoin is open-source public blockchain, what happpened in the bitcoin blockchain can also happen in ravencoin. As ravencoin is really focused on assets, which have financial values related, stability is very important. So things like chain split hard fork is big threat, and it can be the reason of hesitation of corporates and financial institution who are considering ravencoin blockchain for their business platform.

Please share your thoughts.
RVN Gazua!!
submitted by hopefulko to Ravencoin [link] [comments]

AMA with Sinovate, a new GPU friendly coin with new innovations to the space

SINOVATE
What SINOVATE is aiming on Cryptocurrency Market?
SINOVATE is created for Innovation and it aims to keep bringing never before seen Innovations in the crypto market.
What is Infinity Nodes, why different from Classical Masternode System? Infinity Nodes are groundbreaking evolved masternodes that solves the inflation problem. Traditional masternodes start with high ROI but with very large inflation and that inflation is what inevitably makes them fail.
What is IDS, why is it better than cloud storage? And size providers how to get/ earn SIN?
IDS = Incorruptible Data Storage.
IDS is a peer-to-peer private networking system, which will permit transactions and storage between miners and Infinity Node owners. Competitors including Sia, Storj, BitTorrent and even IPFS solutions reward individuals for serving and hosting content on their hard drive space, which requires a 24/7 uptime for computers. User hard drives must remain open and the rewards received must justify the costs incurred for leaving computer online.
In IDS, the private networking of decentralized storage relies solely on the SINOVATE Blockchain, with only node owners receiving rewards as compensation for utilising their hard drive resources to run an Infinity Node. Node owners will get rewards both from the Infinity Nodes and from storing confidential data.
IDS will have 5 steps of evolution.
SINOVATE has 533 tp/s. How are you planning to use this as a use case?
Scalability is one of the biggest problems in cryptocurrencies. POS only or centralized cryptocurrencies have higher scalability but are not suitable for the original Satoshi plan. Satoshi Nakamoto’s dream was everybody to mine their own coins without being centralized so SINOVATE blockchain not only is the most scalable POW cryptocurrency but will also have much more increased scalability in the future. Mass adoption requires high scalability especially when it will be used in real life as a payment means. Are we going to see SINOVATE Payment System in the future?
SINOVATE payment gateway will be released this year with high scalability and less than 3 seconds transaction times with the help of FlashSend.
What is SINOVATE aiming with X25X Algorithm?
SINOVATE formerly SUQA always aimed at the ordinary user starting with the X22i custom algorithm and upgraded to X25X to fight the big hardware companies so everyone can mine their own coin without letting ASIC,FPGA companies dominate the network.
Algo Comparison Chart
We are committed to remaining ASIC / FPGA resistant and such use an ever evolving algorithm, the latest variation named X25X launched with the last update. It is protected from difficulty attacks using Dark Gravity Wave v3 and raises the memory requirements compared to X22i bt a factor of five making it harder for ASIC / FPGA to implement.
What is Komodo dPOW , and when is the plan implementation on SINOVATE?
dPoW diagram
KOMODO DPoW is a working and trusted 51 % Attack protection technology to prevent any kind of malicious attacks by the help of notarized data of Bitcoin, KOMODO and SINOVATE chain.
What is the current status on mobile wallets? We saw a mobile wallet trailer.
Mobile wallets will be released in July 2019 as a custom good looking wallet tailored to the specific needs of SIN Blockchain
What is the plan for adoption in real life SINOVATE?
Our team draws from a large diversity of skills from many areas of business and across many different industries. This allows us to design and hone the experience of interacting with the SINOVATE Blockchain at many levels, from developers, business leaders and operational levels, down to the end-user experience.
This allows us to develop software and user experiences from the perspective of all involved, ensuring that the end user is the primary focus.
What is the current financial status on SINOVATE?
SINOVATE are transparent about the financial status of the foundation and the activity taken with funds. We regularly publish updates and the latest one for June is here.
What partnerships will there be in the future?
Besides the Masternodes related partnerships, SINOVATE partnered with KOMODO for the integration of dPoW 51% attack protection, which will be active at the end of July or early August 2019.
As the foundation’s mission is to grow the space for all. We are happy to work with all projects and businesses both by learning from the great work others have undertaken and offering something back to other projects with our open source code.
With Governance what can it do for the community?
Decentralized governance is the future of any successful blockchain project, SINOVATE believes that blockchain will be ubiquitous in the underlying infrastructure and services in the future of everyday life. Having fair voting for developments, marketing and innovations of the SINOVATE chain will be very important for everyone.
Hopefully that covers as an introduction, please fire away below with any questions you might have for us and feel free to join sinovate for the latest news!
Edit - Thanks for the great questions and discussion. First round answered by our CEO u/cryplander, feel free to shoot more :)
submitted by nick_badlands to gpumining [link] [comments]

The Problem with PoW

The Problem with PoW
Miners have always had it rough..
"Frustrated Miners"

The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.

Hashrates and Hardware Types

While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.

2 Guys 1 ASIC

One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.

Implications of Centralization

This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.

The Rise of FPGAs

With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.

All is not lost thanks to.. um.. Technology?

Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"

If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.

In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to CryptoCurrency [link] [comments]

The Magic Number: Bitcoin Prices Top $1000

submitted by gnumber9 to LinuxActionShow [link] [comments]

PBaaS- The Age of Merged Mining is Upon Us

PBaaS- The Age of Merged Mining is Upon Us

Full article found here:
https://medium.com/@myschlongis/pbaas-the-age-of-merged-mining-is-upon-us-687f432bcac3

Summary of article below:

satoshi
Founder
Sr. Member
Activity: 364 Merit: 1997 View Profile
Re: BitDNS and Generalizing Bitcoin
December 09, 2010, 09:02:42 PM
Merited by Traxo (1)
#222
I think it would be possible for BitDNS to be a completely separate network and separate block chain, yet share CPU power with Bitcoin. The only overlap is to make it so miners can search for proof-of-work for both networks simultaneously.
The networks wouldn't need any coordination. Miners would subscribe to both networks in parallel. They would scan SHA such that if they get a hit, they potentially solve both at once. A solution may be for just one of the networks if one network has a lower difficulty.
I think an external miner could call getwork on both programs and combine the work. Maybe call Bitcoin, get work from it, hand it to BitDNS getwork to combine into a combined work.
Instead of fragmentation, networks share and augment each other's total CPU power. This would solve the problem that if there are multiple networks, they are a danger to each other if the available CPU power gangs up on one. Instead, all networks in the world would share combined CPU power, increasing the total strength. It would make it easier for small networks to get started by tapping into a ready base of miners.
-Satoshi Nakimoto


These were the anonymously written, prophetic words of Satoshi Nakimoto, posted to bitcointalk nearly a decade ago and yet they describe a concept that today we are only truly realizing. What Satoshi describes is not only an elegant solution to many of today's cryptocurrency shortcomings but if implemented properly, could form the backbone for an entire crypto-economy of secure, scalable, and self sufficient chains, outside of the flawed one we currently have.
This new crypto-economy would need to be backed by a secure chain itself with immunity to 51% attacks and powerful cutting edge technological features supporting anonymity and protection of assets to pass on down to the interconnected chains.

One such cutting edge project is Verus Coin (https://veruscoin.io/).
The lead Technical Developer of Verus is a former VP at Microsoft who also co-founded Microsoft’s Java and .NET platforms.
Verus has a unique, new consensus algorithm called Proof of Power, a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. Verus utilizes zk-snarks tech zero-knowledge proofs and is not "forced private", allowing for both transparent and shielded (private) transactions along with private messages as well. They created their very own hardware equalizing algorithm VerusHash 2.0, that leverages the many hardware advantages intrinsic to modern CPU's architecture, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. VerusHash 2.0 is specifically designed to better equalize hashrates across all mining hardware types, allowing CPUs and FPGAs to mine competitively on the same network and by favoring the latest CPUs over older types, has the additional benefit of being a defense against the centralizing potential of botnets.

Verus and the Verus Coin project are community driven, all open source (https://github.com/VerusCoin/VerusCoin) and they are also now currently running a test net of their all new protocol, PBaaS (Public Blockchain as a Service) with merged mining of up to 15 (including Verus) fully independent, secure, scalable chains that all share the properties of the parent chain described above. Check out their Discord to give merged mining a try for yourself.

I do know that merged mining as a concept has been around for a while. There are even some implementations out there too, but not on the scale of what Verus is doing. They are creating an ecosystem fully interconnected and yet independent blockchains that scale and because of their implementation (The bottom link on Merkle Mountain Ranges (MMRs)) they will all be able to be exchanged with each other and converted automatically, like a smart exchange without the need for buyers and sellers. What they are doing is truly revolutionary in it's one click chain creation ease and the fact that it is a massive network of chains (just like each of all the coins we have now) but where people can mine up to 15 projects at a time at no additional energy costs and all the created projects are fully protected. I do understand that other projects are doing great things as well and it was not my aim to downplay that but rather to highlight what can come next and fill in the holes left from a first generation blockchain network.



A Peek at the GUI (Graphical User Interface) version of the wallet
https://preview.redd.it/sa0dzgtyk5v21.jpg?width=1651&format=pjpg&auto=webp&s=08f89d5fbb7682a6fbba105fa8819c906dffcb44
https://preview.redd.it/1f65bfk1l5v21.png?width=3840&format=png&auto=webp&s=daadea4ad6775ac68abad2754944f7afd4ee4e0a


A Peek at the CLI (Command Line Interface) version of the wallet (with GUI) courtesy of a community member.
https://preview.redd.it/pdzpu4p7l5v21.jpg?width=2444&format=pjpg&auto=webp&s=40c17cd47c1d25c98de1e50947949f99dcbc484d


A helpful place for lots of useful information and if you want to learn more, check out their Medium page (https://medium.com/veruscoin)

A rough description of the concepts described above:

-PBaaS: or Public Blockchain as a Service is a revolutionary new take on the blockchain as a service model entirely unique to Verus that offers the tools and necessary means to build on and utilize blockchain technology for business or personal use. It is similar to using a web hosting service to build a website with, but rather than having to build one by yourself from scratch, the service provider supplies the basics and handles all the necessary tasks from general upkeep to infrastructure maintenance. Since Verus doesn't rely on a centralized authority to work, there isn't any one single point of failure in the network, so in the event of a hack, power failure, data breach or loss, Verus' system is immune while the other options aren't. Instead of relying on a centralized system, Verus elegantly does work for the public by utilizing the public to do work.

-Merge Mining: or auxiliary mining is a lesser known cryptographic concept that has been seldom discussed and even less so attempted, but can be found as far back as bitcointalk's earliest days. Unfortunately, development in this area of work has remained largely stagnant due to the numerous difficulties involved in coding it, coupled with the sheer complexity and vast scope involved in the programming work. Fortunately, the development team's years of experience and months of hard work have finally paid off, and now merge mining in it's true form is at last a reality. This means that a miner could find a block for Verus and now hypothetically also earn block rewards for several other projects at the exact same time! With literally nothing to lose, and significantly more to gain, it's a no brainer choice for miners. Now miners who mine for profit can make more with the same energy expenditure, while at the same time still have the option to speculatively mine and hold projects they really believe in or care about. Businesses and individual project creators will benefit too by being able to attach a newly formed project to the hashrate of a larger, more established one. This would provide security and reliability to new projects right away and in their earliest stages, a point where they are most vulnerable. Verus has created the foundation for which any person or business, whether small or large, can safely and easily enter into the blockchain.

A semi-visual descriptive paper on the immense benefits of utilizing Merkle mountain ranges, one of the many technologies implemented in Verus PBaaS- https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html




Also, full disclosure for readers or mods, I am also a member of this crypto community among several others and this should not diminish the value of it's content. I wrote this post to highlight a genuine technical achievement in cryptocurrency and if not here, then where do we discuss this?
The lead developer Michael Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date.
What their team has managed to do (in testnet, but open to the public for testing) is truly unique in that they've already built a functional system of fully interconnected blockchains that each are also completely independent from one another and fully scalable, private, secure, and immune to 51% attacks. Public blockchain as a service is their ultimate goal of offering these near infinite, secure blockchains to project creators, mineable for near zero energy and protected from attacks. Secure voting, polling, and identity using the tech are on the not-too-distant horizon.
Even the briefest glance over any of their work and it is easy to see this is not just another bs post. I hope this complies with all the rules. If there is some other place to discuss cryptocurrency and the launch of an all new system within it, please let me know. Things keep getting removed without a word said why. I'm happy to do things the proper way.
submitted by Godballz to CryptoCurrency [link] [comments]

The Problem with PoW


Miners have always had it rough..
"Frustrated Miners"


The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.
Hashrates and Hardware Types
While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.
2 Guys 1 ASIC
One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.
Implications of Centralization
This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.
The Rise of FPGAs
With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.
All is not lost thanks to.. um.. Technology?
Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"
If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.
In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to EtherMining [link] [comments]

Mining Bitcoin - The Coming Environmental Subsidy

Mining Bitcoin - The Coming Environmental Subsidy.
Mining Bitcoin incentives one to stake hardware and electricity in return for digital assets, which have or can have a market price that exceeds the cost of the electricity staked. Bitcoin is an uncorrelated hedge against the world economy, it’s programmable scarcity, not perceived scarcity, and is perhaps the hardest money the world has ever seen. Coming and developing second layer protocols for Bitcoin will execute transactions at the speed of light, and for virtually no cost. In time a decentralized economy will become our new reality, and networks will be owned by their users. There will be lighter weight consensus algorithms for most networks, but Proof Of Work, and in turn Bitcoin, will be the internets reserve currency, and what we peg the value of all decentralized networks to in the coming “Web 3” world. Bitcoin is here to stay, and Bitcoin mining presents a new opportunity in renewable energy.
Today, miners are moving as fast as they can to scale, lower their power cost, and decrease counter party risk. We are seeing a trend with miners setting up modular data centres behind the meter, tucked up to power plants that are located in areas where capacity is not in line with local demand, so miners become an obvious choice to churn through the surplus capacity of these plants. The issue here as it pertains to “environmental concern” is that miners cannot enter into energy purchase agreements (EPA’s) with plants that produce renewable power intermittently. So the result, we have mining farms finding blocks with coal or gas. Operators setting up such mining infrastructure often cite opportunity cost, which is definitely understandable, but irrespective of environmental hazard, the opportunity & economics of mining with fossil fuels will be short lived. Additionally these fossil fuel miners are beginning to face major counter party risk. Buying power to mine from major corporations, public utilities, or governments is convoluted and risky. Even one day without access to electricity can affect the bottom line, miners must begin thinking about energy independence. In the next 5 years setting up or sustaining a fossil fuel farm will be akin to thinking its a good idea to open and run a blockbuster video.
There are two major changes happening now in mining, and these changes will be the principal underwriters of Bitcoins coming “Environmental Subsidy”.
  1. Cost reductions in renewables & storage.
  2. The decentralization of mining.
In 2009 the global average cost to produce a Mwh of Solar was $350, in 2018 it was $50. The global average for coal production in 2018 was $100 per Mwh. Couple the declining cost bases for renewables with supportive policy and subsidies, and from a more macro POV its obvious where were going in terms of the type of energy that will be flowing into the grid. Although the sun doesn’t always shine and the wind doesn’t always blow, but there is a trend that is mitigating that - declining costs in storage. Today the average cost to the consumer of lithium ion storage is dropping rapidly, and multiple sources point to a cost base of $100 per Mwh or lower by 2025. In that not too distant future it is reasonable to speculate that we will see non grid tied mining ops running 24/7 - 365, whilst capturing and storing a surplus & finding blocks with their batteries.
Bitcoin mining is ironically centralized. Although with closer observation, we can see that mining centralization is the result of an expeditious technology adoption curve. In approximately 4-5 years miners went from CPUs, to GPUs, FPGAs, and now of course ASIC’s. These changes each represented more than 10,000X improvements, which meant that miners were completely writing down their hardware within 4-6 months. So to mine at scale in the earlier years, you basically needed direct access to a chip factory and massive capital. It made more sense for a hardware manufacturers to run their own hardware than to sell it, and in turn mining became centralized. Although were now close to the top of the hardware improvement curve, and will perhaps see improvements of 2X every 2 or 3 years going forward. So, with that being said, hardware manufactures have it in their best interest to sell their rigs, being that they no longer have the “chip advantage”. The plateau of mining hardware innovation marks the advent of mining decentralization.
In the coming years allocating some or all electricity generated at the point of production to mine Bitcoin, will allow one to amortize an investment in renewables sooner than if the power was sold into the grid. Bitcoin will become the reserve currency of the internet and as such de-risk the capital deployed in renewables when operators of renewable energy assets allocate some or all of their power to secure the Bitcoin blockchain. Electricity production will also become more decentralized as localized production and mini grids become complimentary to larger legacy points of production, which will in turn support the decentralization of mining. Our future energy needs will be met using renewables, and the same renewable power that heats our homes and charges our cars, will underpin the Bitcoin blockchain and the internet of money.
submitted by kalapa108 to Bitcoin [link] [comments]

The original proponent of progPOW, Kristy Leigh Anne Minehan, appears to have scammed people with cloud contracts, criticism, and soft power, and chatlog dumps.

Previous Posts
Criticism and Soft Power
I have received criticism for my posts mostly due to what people call "character attacks." I have two things to say about that:
  1. I have never engaged in any character attacks. In all cases, the character has made their modus operandi known by themselves, and I have simply shined a light on it. I don't need call people "mentally unstable gentlemen" [--source, Ohgodagirl Twitter] to get my point across.
  2. Algorithm change discussions must include economic and political introspection as well as a discussion of the proposed change's technical details. As I have stated before, progPOW would not exist without the people responsible for creating it. We must look at these people's history, character, prior accomplishments, and industry connections. The discussion must exist outside the scope of the proposed change, not inside of it.
Example: When people criticize my posts for "not looking at the technical details", they are making a mistake. If someone asked "which should we kill more often: baby seals or baby kittens?", we don't all immediately start discussing the optimal relation of kittens-per-second to seals-per-second that can be killed. No, our first reaction is "what the fuck, why should we kill anything?"
Onward
Customer complaints from people who bought cloud contracts from Kristy's previous company:
Coingeek Connection
Previously, I had promised to provide information regarding the CSW/Coingeek and Core Scientific connection.
When I was president of ImageShack.com (2003-2011), someone wanted to buy our company. When this happens, the buyer and seller usually write a purchase agreement similar to the business in which they are involved. This is done to ensure that the purchase is executed. In ImageShack's case, the buyer bought $500,000 worth of advertising from us. The logic was that ImageShack would be acquired, so they actually would pay themselves. If they didn't buy ImageShack, they would owe us $500,000.
Given the partnership between Core Scientific (Kristy's employer) and "Squire Mining" (effectively, Coingeek), I would not be surprised if Coingeek and Core Scientific made such an agreement, as well. In their case, it would likely be a hosting agreement. Since Coingeek has many ASICs, and Core Scientific is a large mining facility, I would not be surprised if those Coingeek ASICs are hosted by Core Scientific.
Individuals close to these parties can verify those claims, but I cannot share the proof at this time without revealing the identity of my sources.
Chatlog Dumps
Today, I also provide public comments from chatlog dumps showcasing Kristy Leigh Anne Minehan's deep connection to NVIDIA:
01/28/2018 - 22:34<@OhGodAGirl> Yo. ystarnaud/sling00: **I'll be meeting NV next week**. I think it's next week. The 4th! Anyway; if you have NVIDIA fixes you need for EthOS or something you want special attention on, PM me. 02/05/2018 - 06:47<@OhGodAGirl> Also I got a USB shaped like a NVIDIA GTX. It's the best thing ever. 02/05/2018 - 06:50<@OhGodAGirl> https://usercontent.irccloud-cdn.com/file/ffwT8M2j/IMG_2726.JPG 02/05/2018 - 06:50<@OhGodAGirl> Look at this adorable little shit. 
"Ah, but there's a catch. These USB drives are extremely rare—Nvidia only cranked out a couple thousand of these drives and will be giving them away to press and "influencers" at E3, along with 1,080 registered GeForce Experience members who are opted in to receive communications from Nvidia."
04/22/2018 - 20:17<@sling00> OhGodAGirl: what does ohgodanethlargement do 04/22/2018 - 20:17< cYnIxX3> https://youtu.be/2mj1nCfFvlI?t=2m16s 04/22/2018 - 20:19< cYnIxX3> sling00, about 10-25mh improvement to 1080 gpus. 04/22/2018 - 20:19< __virus__> about 40-50% improvement afaik 04/22/2018 - 20:21< OhGodAGirl> But...it's not under because NVIDIA asked me not to. 04/21/2018 - 16:51< OhGodAGirl> I have a ton of private tools for Mineority 04/21/2018 - 16:51< OhGodAGirl> Right now our Equihash kernel has a 25% advantage over Claymore. 04/21/2018 - 16:52< PL3> 25% on amds? 04/21/2018 - 16:52< OhGodAGirl> NVIDIA ;) 04/21/2018 - 16:52< PL3> you have claymore nvidia equi miner? 04/21/2018 - 16:52< OhGodAGirl> We're a NV only company. For now. 04/29/2018 - 00:53< OhGodAGirl> So uh, NVIDIA showed ETHlargement at an executive meeting 04/29/2018 - 00:53< OhGodAGirl> They thought it was hillarious 04/29/2018 - 00:53< acv_> that is awesome. 04/29/2018 - 01:22< OhGodAGirl> So many dicks on Youtube though 04/29/2018 - 01:22< OhGodAGirl> "RA RA IT'S A SCAM" 04/29/2018 - 01:22< OhGodAGirl> "RA RA IT WILL STEAL ALL YOUR PRIVKEYS" 04/29/2018 - 01:22< OhGodAGirl> "RA RA NO ONE IS EVER NICE IN THIS WORLD' 04/29/2018 - 01:22< OhGodAGirl> Well dammit I'm a nice person. =( 
submitted by ugtarmas to ethereum [link] [comments]

10Gh/s 0xBitcoin Mining on FPGA Are USB Bitcoin Miners Profitable RIGHT NOW In 2020? - YouTube FPGA bitcoin mining cluster (BFL Singles / Icarus / X6500) ELE 432- FPGA Bitcoin Miner UNBOXING of a Atom Miner AM01 FPGA!

It is a desktop application for crypto mining and monitoring on Windows, Mac OS X and Linux. MultiMiner simplifies switching individual devices (GPUs, ASICs, FPGAs) between crypto-currencies such as Bitcoin and Litecoin. An open-source project, MultiMiner is compatible with many mining devices. A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. A binary release is currently available for the Terasic DE2-115 Development Board, and there are compile-able projects for numerous boards. - fpgaminer/Open ... The Field Programmable Gate Array (or FPGA for short) are effectively mining rigs that can be quickly programmed with a good deal of speed and ease. If there was ever a need for a dedicated mining network to spontaneously change the makeup of its algorithm, FPGA can make the changes needed. Open Source FGPA Bitcoin MinerJust released was the Open Source FPGA Bitcoin Miner software. This miner allows bitcoins to be mined using a commercially available FPGA board. FPGA boards consume much less electricity compared to GPUs for the hashing work performed when mining bitcoins. Open-Source-FPGA-Bitcoin-Miner by progranism - A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. A binary release is currently available for the Terasic DE2-115 Development Board, and there are compile-able ...

[index] [1530] [21875] [8992] [16] [12989] [22411] [3089] [10467] [16081] [7827]

10Gh/s 0xBitcoin Mining on FPGA

TPS1525 FPGA Mining Air Cooler 0xToken 15G 20181002 with PowerSupply - Duration: ... (3M Novec Immersion Cooling for Bitcoin Mining) - Duration: 1:02. AlliedControl1 15,801 views. 1:02. #Bitcoin #FPGA #AtomMiner. Loading... Hide chat Show chat. Autoplay When autoplay is enabled, ... Liquid Cooled Bitcoin Mining in 2019 - Duration: 2:42. WhatsMinerMicroBT 3,330 views. Cracked the 10Gh/s barrier mining 0xBitcoin on the Xilinx VCU1525 FPGA. I used a antminer fan and created a DIY cardboard funnel to help with the additional cooling. I'll be adding a rear heatsink ... Bitcoin Mining with FPGAs (EC551 Final Project) - Duration: 6:11. Advanced Digital Design with Verilog and FPGAs - Boston University 5,295 views To download and view our complete article go here: https://www.freelearner.how/2018/08/17/diy-fpga-miner-keccak-fpga-miner/

#